What is Computer Memory? (Intro)




You already know that the computer in front of you has memory. What you may not know is that most of the electronic items you use every day have some form of memory also. Here are just a few examples of the many items that use memory: 
  • Cell phones
  • PDA
  •  Game consoles
  • Car radios
  • VCRs
  •  TVs

Each of these devices uses different types of memory in different ways!

Although memory is technically any form of electronic storage, it is used most often to identify fast, temporary forms of storage. If your computer's CPU had to constantly access the hard drive to retrieve every piece of data it needs, it would operate very slowly. When the information is kept in memory, the CPU can access it much more quickly. Most forms of memory are intended to store data temporarily.

The CPU accesses memory according to a distinct hierarchy. Whether it comes from permanent storage (the hard drive) or input (the keyboard) most data goes in random access memory (RAM) first. The CPU then stores pieces of data it will need to access, often in a cache, and maintains certain special instructions in the register.

All of the components in your computer, such as the CPU, the hard drive and the operating system, work together as a team, and memory is one of the most essential parts of this team. From the moment you turn your computer on until the time you shut it down, your CPU is constantly using memory. Let's take a look at a typical scenario:

  • You turn the computer on.
     
  • The computer loads data from read-only memory (ROM) and performs a power-on self-test (POST) to make sure all the major components are functioning properly. As part of this test, the memory controller checks all of the memory addresses with a quick read/write operation to ensure that there are no errors in the memory chips. Read/write means that data is written to a bit and then read from that bit.
     
  • The computer loads the basic input/output system (BIOS) from ROM. The BIOS provides the most basic information about storage devices, boot sequence, security, Plug and Play (auto device recognition) capability and a few other items.
     
  • The computer loads the operating system (OS) from the hard drive into the system's RAM. Generally, the critical parts of the operating system are maintained in RAM as long as the computer is on. This allows the CPU to have immediate access to the operating system, which enhances the performance and functionality of the overall system.
     
  • When you open an application, it is loaded into RAM. To conserve RAM usage, many applications load only the essential parts of the program initially and then load other pieces as needed.

  • After an application is loaded, any files that are opened for use in that application are loaded into RAM.

  • When you save a file and close the application, the file is written to the specified storage device, and then it and the application are purged from RAM.

In the list above, every time something is loaded or opened, it is placed into RAM. This simply means that it has been put in the computer's temporary storage area so that the CPU can access that information more easily.

The CPU requests the data it needs from RAM, processes it and writes new data back to RAM in a continuous cycle. In most computers, this shuffling of data between the CPU and RAM happens millions of times every second.
 
When an application is closed, it and any accompanying files are usually purged (deleted) from RAM to make room for new data. If the changed files are not saved to a permanent storage device before being purged, they are lost.

Fast, powerful CPUs need quick and easy access to large amounts of data in order to maximize their performance. If the CPU cannot get to the data it needs, it literally stops and waits for it.
 
Modern CPUs running at speeds of about 1 gigahertz can consume massive amounts of data -- potentially billions of bytes per second. The problem that computer designers face is that memory that can keep up with a 1-gigahertz CPU is extremely expensive -- much more expensive than anyone can afford in large quantities.
 
Computer designers have solved the cost problem by "tiering" memory -- using expensive memory in small quantities and then backing it up with larger quantities of less expensive memory.
 
The cheapest form of read/write memory in wide use today is the hard disk. Hard disks provide large quantities of inexpensive, permanent storage. You can buy hard disk space for pennies per megabyte, but it can take a good bit of time (approaching a second) to read a megabyte off a hard disk. Because storage space on a hard disk is so cheap and plentiful, it forms the final stage of a CPUs memory hierarchy, called virtual memory.
 
The next level of the hierarchy is RAM.  The bit size of a CPU tells you how many bytes of information it can access from RAM at the same time. For example, a 16-bit CPU can process 2 bytes at a time (1 byte = 8 bits, so 16 bits = 2 bytes), and a 64-bit CPU can process 8 bytes at a time.
 
Megahertz (MHz) is a measure of a CPU's processing speed, or clock cycle, in millions per second. So, a 32-bit 800-MHz Pentium III can potentially process 4 bytes simultaneously, 800 million times per second (possibly more based on pipelining)! The goal of the memory system is to meet those requirements.
 
A computer's system RAM alone is not fast enough to match the speed of the CPU. That is why you need a cache (discussed later). However, the faster RAM is the better. Most chips today operate with a cycle rate of 50 to 70 nanoseconds. The read/write speed is typically a function of the type of RAM used, such as DRAM, SDRAM, RAMBUS.

System RAM speed is controlled by bus width and bus speed. Bus width refers to the number of bits that can be sent to the CPU simultaneously, and bus speed refers to the number of times a group of bits can be sent each second. A bus cycle occurs every time data travels from memory to the CPU.

For example, a 100-MHz 32-bit bus is theoretically capable of sending 4 bytes (32 bits divided by 8 = 4 bytes) of data to the CPU 100 million times per second, while a 66-MHz 16-bit bus can send 2 bytes of data 66 million times per second. If you do the math, you'll find that simply changing the bus width from 16 bits to 32 bits and the speed from 66 MHz to 100 MHz in our example allows for three times as much data (400 million bytes versus 132 million bytes) passing through to the CPU every second.

In reality, RAM doesn't usually operate at optimum speed. Latency changes the equation radically. Latency refers to the number of clock cycles needed to read a bit of information. For example, RAM rated at 100 MHz is capable of sending a bit in 0.00000001 seconds, but may take 0.00000005 seconds to start the read process for the first bit. To compensate for latency, CPUs uses a special technique called burst mode.
 
Burst mode depends on the expectation that data requested by the CPU will be stored in sequential memory cells. The memory controller anticipates that whatever the CPU is working on will continue to come from this same series of memory addresses, so it reads several consecutive bits of data together.
 
This means that only the first bit is subject to the full effect of latency; reading successive bits takes significantly less time. The rated burst mode of memory is normally expressed as four numbers separated by dashes.

The first number tells you the number of clock cycles needed to begin a read operation; the second, third and fourth numbers tell you how many cycles are needed to read each consecutive bit in the row, also known as the word line. For example: 5-1-1-1 tells you that it takes five cycles to read the first bit and one cycle for each bit after that. Obviously, the lower these numbers are, the better the performance of the memory.

Burst mode is often used in conjunction with pipelining, another means of minimizing the effects of latency. Pipelining organizes data retrieval into a sort of assembly-line process. The memory controller simultaneously reads one or more words from memory, sends the current word or words to the CPU and writes one or more words to memory cells. Used together, burst mode and pipelining can dramatically reduce the lag caused by latency.
 
So why wouldn't you buy the fastest, widest memory you can get? The speed and width of the memory's bus should match the system's bus. You can use memory designed to work at 100 MHz in a 66-MHz system, but it will run at the 66-MHz speed of the bus so there is no advantage, and 32-bit memory won't fit on a 16-bit bus.
 
Even with a wide and fast bus, it still takes longer for data to get from the memory card to the CPU than it takes for the CPU to actually process the data. That's where caches come in.

Thanks for reading... 

Read more:


0 comments:

Post a Comment